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There is growing interest in nanostructured inorganic materials,
in large part because they often exhibit properties distinct from
those of the bulk that can prove useful in various applications,
including heterogeneous cataly$id. The established methods Liljum
for the preparation of nanostructured inorganic materials include
metal evaporatiof, reduction of metal saltd! and thermal
decomposition and laser pyrolysis of organometallic compotifids.

In addition, the sonochemical reaction of volatile organometallics
is a recent and general synthetic approach to nanophase transition
metal powders, alloys, carbides, and collditid3 We report here

a simple sonochemical synthesis of nanophase, high-surface-area
molybdenum sulfide and the examination of its catalytic activity
for thiophene hydrodesulfurization (HDS).

MoS, was prepared by irradiating a slurry of molybdenum
hexacarbonyl and sulfur in 1,2,3,5-tetramethylbenzene (isodurene)
with high-intensity ultrasound (20 kHz) under A& Elemental
analysis of the purified powder indicates a stoichiometric
molybdenum sulfide (S/Mo atomic ratio of 2.0) with a trace
amount 2 wt %) of carbon contamination. For comparison, a
conventional molybdenum sulfide sample was also prepared by [r—
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broad peaks. After thermal treatment under He, however, the 3
MoS,; exhibits sharper peaks with correspondihgpacings of
6.30, 2.68, 1.57, and 1.22 A corresponding to {062, {100},
{103, and{ 110G reflections of hexagonal Mg%6.16, 2.67, 1.58,

and 1.22 A), respectivef. An average crystallite size of1.6

nm was estimated from thg02 peak width!’

Scanning electron micrographs of sonochemically and con-
ventionally prepared MaSare shown in Figure 1. The sonochem-
ical MoS; exists as a porous agglomeration of clusters of spherical
particles with an average diameter of 15 nm, which are themselves
aggregates of smaller particles. Energy dispersive X-ray (EDX)
analysis performed on these particles gave a S/Mo atomic ratio
of 2.06, identical within experimental error to that from bulk 0
chemical analysis. In contrast, the conventional Mslsows a
platelike morphology typical for such layered materials. Despite
the morphological difference between the sonochemical and Figure 3. Catalytic activities of various catalysts in thiophene HDS as
conventional Mo§ the transmission electron microscopy (TEM) a function of temperature.
images (Figure 2) of these sulfides both show lattice fringes with
interlayer spacings of 0.62 0.01 nm, the same as those for 45 B butane § trans-2-butene M butadiene
conventional Mo&!® The sonochemically prepared Mg®ow- I 1-butene S cis-2-butene
ever, shows much greater edge and defect content, as the layers
must bend, break, or otherwise distort to fit the outer surface of
the 15-nm particle size (Figure 2).

The electronic states of Mo and S in the sonochemically
prepared Mogwere determined by X-ray photoelectron spec-
troscopy (XPS), which showed well-defined spin-coupled Mg$3d
3dk2) and S(2pr, 2p12) doublets at binding energi@the same
as that for conventional M@3° Analysis of the Mo(3d) and S(2p)
peak intensities (corrected with sensitivity factors based on
Scofield cross sectior@)gave a S/Mo atomic ratio of 2.03, in =
agreement with the EDX and chemical analysis results. 0 N=

Molybdenum sulfide is an excellent high-temperature lubricant, MoS,(conv)  ReS, Mo,C
but more importantly, it is also the predominant HDS catal§/st.  rigure 4. Distribution of G hydrocarbon products observed during
Itis well established that the activity of Me$ localized atthe  thiophene HDS with various catalysts at 375
edges and not on the flat basal plafesGiven the inherently
higher edge concentrations in nanostructured materials, the
catalytic properties of our sonochemically prepared Mm&ome
especially interesting. To this end, the catalytic activity and
selectivity for thiophene HDS by sonochemically prepared MoS
was examined in a single-pass microreaétorConventional
MoS;, sonochemical MgZ, commercial ReSGallard-Schlesing-
er Ind., Carle Place, NY), and RufGallard-Schlesinger) were
also investigated under the same conditions for comparison. For
conventionally prepared sulfides, Reghd Ru$ are inherently
more reactive than Mo3' but are too expensive to be generally

used. Given the difference in edge versus basal surface activity,exCeption of the sonochemical MgSwhich gives more butane

catalytic activity d_oes not correlate with total surface &read . due to its higher activity. The accepted mechanism for thiophene
therefore comparisons must be made on a cgtalyst mass erlSIL:1'—|DS involves initial hydrogenolysis of the-€S bonds to give
The observed turnover frquengles as afunctlop of temperaturey tadiene, followed by rapid hydrogenation to 1-butene, which
for these catalysts are shown in Figure 3. The prlnC|paI products jq subsequently hydrogenated to butane or isomerized to a
detected by GC were the,@ydrocarbons butadiene, 1-butene, thermodynamic mixture ofis- andtrans-2-buteneg?25
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trans-2-butenegis-2-butene, and butane. No partially hydroge-
nated thiophenes were detected, and lighter-(G) hydrocarbons
accounted for less than 1% of the reaction products. The observed
HDS activity order is Mog (sonochemical}> RuS (conven-
tional) > ReS (conventional~ Mo,C (sonochemical) > MoS,
(conventional). Catalytic activity of the sonochemically prepared
samples decreased initially somewh&ab0% over 20 h), so the
activities reported here were measuidter 20 h of use. The
product selectivities, expressed as percent of tojahy@rocar-
bons, observed at 378 are shown in Figure 4. All of the
catalyst studied show high selectivity for butenes with the

ang 25?22.135 ev, (rSeSEECtiVSIy;(S S(g;) at226.16 eV, cI:haracteristRfoS(SZQ/z) use of the sonochemically prepared Ma@S supported and Co-
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